skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vélez, Tatiana Castro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Boronat, Artur; Fraser, Gordon (Ed.)
    Abstract Efficiency is essential to support responsiveness w.r.t. ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraceddeferredexecution-style DL code—supporting symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, imperative DL frameworks encouragingeagerexecution have emerged but at the expense of run-time performance. Though hybrid approaches aim for the “best of both worlds,” using them effectively requires subtle considerations to make code amenable to safe, accurate, and efficient graph execution—avoiding performance bottlenecks and semantically inequivalent results. We discuss the engineering aspects of a refactoring tool that automatically determines when it is safe and potentially advantageous to migrate imperative DL code to graph execution and vice-versa. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Full Changelog: https://github.com/ponder-lab/ML/compare/0.33.0...0.34.0 
    more » « less